Софт-Архив

Что Такое Crt img-1

Что Такое Crt

Рейтинг: 4.7/5.0 (1839 проголосовавших)

Категория: Windows: FTP, SSH, Telnet

Описание

CRT мониторы

Монитор - вещь дорогая, а посему его выбор должен быть грамотным и правильным. Если вы постоянно модернизируете свой компьютер, то обратите внимание, что меньше всего вы меняете монитор, а возможно, некоторые и вообще не меняли его уже несколько лет. Причина тому - их неприхотливость, надежность и дороговизна. Купив новый монитор, вы можете и не заметить его недостатки, пока не увидите монитор, в котором они устранены. Есть вариант, когда вам придется поменять монитор по причине его неработоспособности или при обнаружении явных недоработок или ошибок производителя. Возможно, эта статья поможет вам в выборе монитора или по крайней мере вы узнаете их разновидности и принцип работы.

Сегодня самый распространенный тип мониторов это CRT (Cathode Ray Tube) мониторы, с них мы и начнем. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить электронно-лучевая трубка (ЭЛТ). Используемая в этом типе мониторов технология была создана много лет назад и первоначально применялась в качестве специального инструментария для измерения переменного тока, проще говоря, для осциллографа. Развитие этой технологии применительно к созданию мониторов за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости. Сегодня найти в магазине 14" монитор уже не так легко, а ведь года три-четыре назад это был стандарт. Сегодня стандартными являются 15" мониторы и наблюдается явная тенденция в сторону 17" экранов. Скоро 17" мониторы станут стандартным устройством, особенно в свете существенного снижения цен на них, а на горизонте уже 19" мониторы и более.

Рассмотрим принципы работы CRT мониторов. CRT, или ЭЛТ монитор, имеет стеклянную трубку, внутри которой находится вакуум, т.е. весь воздух удален. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (Luminofor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор это вещество, которое испускает свет при бомбардировке его заряженными частицами.

Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии CRT, ничего не имеет общего с фосфором. Более того, фосфор "светится", и недолго, в результате взаимодействия с кислородом воздуха при окислении (кстати, белый фосфор - сильный яд). Для создания изображения в CRT мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разно-цветными люминофорными точками. Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому полезны.

Все мы знаем или слышали о том, что наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз их не всегда может различить). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные частицы люминофор, чье свечение основными цветами с различной интенсивностью комбинируется, и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно разница в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев, определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Итак, повторимся: каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия, используется специальная маска, чья структура зависит от типа кинескопов от разных производителей. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Итак, самые распространенные типы масок это теневые, а они бывают двух типов: Shadow Mask (теневая маска) и Slot Mask (щелевая маска).

Теневая маска

Теневая маска (shadow mask) - это самый распространенный тип масок для CRT мониторов. Теневая маска состоит из металлической сетки перед частью стеклянной трубки с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара (сплав железа и никеля). Отверстия в металлической сетке работают как прицел, именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях.

Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленого, красного и синего, - которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Минимальное расстояние между люминофорными элементами одинакового цвета называется dot pitch (или шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах (мм). Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения. Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, Viewsonic.

Щелевая маска

Щелевая маска (slot mask). Эта технология широко применяется компанией NEC под именем "CromaClear". Это решение на практике представляет собой комбинацию двух технологий описанных выше. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется slot pitch (щелевой шаг). Чем меньше значение slot pitch, тем выше качество изображения на мониторе.

Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat). Кстати, самым первым монитором с плоской трубкой был именно Pаnasonic с трубкой PanaFlat. Вообще, тема мониторов с плоскими трубками заслуживает отдельного рассмотрения.

Есть и еще один вид трубок, в которых используется Aperture Grill (апертурная или теневая решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony еще в 1982 году.

Апертурная решетка

Апертурная решетка (aperture grill) - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но имеющих одинаковую суть, например технология Trinitron от Sony или Diamondtron от Mitsubishi.

Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной(ых) (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой Вы и видите на экране.

Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же, наоборот, довольны и используют их в качестве горизонтальной линейки.

Минимальное расстояние между полосами люминофора одинакового цвета называется strip pitch (или шагом полосы) и измеряется в миллиметрах (мм). Чем меньше значение strip pitch, тем выше качество изображения на мониторе. Апертурная решетка используется в мониторах от Viewsonic, Radius, Nokia, LG, CTX, Mitsubishi и во всех мониторах от SONY.

Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, 0.25 мм strip pitch приблизительно эквивалентно 0.27 мм dot pitch.

Оба типа трубок имеют свои преимущества и своих сторонников. Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими CRT хорошо использовать при интенсивной и длительной работе с текстами и мелкими элементами графики, например в CAD/CAM-приложениях. Трубки с апертурной решеткой имеют более ажурную маску, она меньше заслоняет экран и позволяет получить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями. В CAD системах мониторы с трубкой, в которой используется апертурная решетка, недолюбливают не потому, что они хуже воспроизводят мелкие детали, чем трубки с теневой маской, а потому что экран монитора типа Trrinitron плоский по вертикали и выпуклый по горизонтали - т.е. имеет выделенное направление.

Как мы уже упоминали, кроме электронно-лучевой трубки, внутри монитора есть еще и управляющая электроника, которая обрабатывает сигнал, поступающий напрямую от видеокарты вашего PC. Эта электроника должна оптимизировать усиление сигнала и управлять работой электронных пушек, которые инициируют свечение люминофора, создающего изображение на экране. Выводимое на экране монитора изображение выглядит стабильным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам в следующем порядке: слева направо и сверху вниз на экране монитора.

Этот процесс происходит очень быстро, поэтому нам кажется, что экран светится постоянно. В сетчатке наших глаз изображение хранится около 1/20 секунды. Это означает, что если электронный луч будет двигаться по экрану медленно, мы можем видеть это движение как отдельную движущуюся яркую точку, но когда луч начинает двигаться, быстро прочерчивая на экране строку хотя бы 20 раз в секунду, наши глаза не увидят движущейся точки, а увидят лишь равномерную линию на экране.

Если теперь заставить луч последовательно пробегать по многим горизонтальным линиям сверху вниз за время меньшее 1/25 секунды, мы увидим равномерно освещенный экран с небольшим мерцанием. Движение самого луча будет происходить настолько быстро, что наш глаз не будет в состоянии его заметить. Чем быстрее электронный луч проходит по всему экрану, тем меньше будет заметно и мерцание картинки. Считается, что такое мерцание становится практически незаметным при частоте повторения кадров (проходов луча по всем элементам изображения) примерно 75 раз в секунду. Однако, эта величина в некоторой степени зависит от размера монитора. Дело в том, что периферийные области сетчатки глаза содержат светочувствительные элементы с меньшей инерционностью. Поэтому мерцание мониторов с большими углами обзора становится заметным при больших частотах кадров. Способность управляющей электроники формировать на экране мелкие элементы изображения зависит от ширины полосы пропускания (bandwidth). Ширина полосы пропускания монитора пропорциональна числу пикселей, из которых формируется изображение видеокартой вашего компьютера.

Теперь что касается поддерживаемых монитором частот. Очень часто на коробке от монитора указывается только ширина полосы пропускания частот. Иногда еще и диапазон горизонтальной частотной развертки. Впрочем, как правило, в руководстве к монитору можно найти и дополнительную информацию. В принципе, если монитор соответствует стандарту TCO, то уже из этого можно сделать выводы о его характеристиках. Но даже зная только ширину полосы пропускания монитора, можно определить достаточно точно, сможем ли мы работать в требуемом разрешении при необходимой частоте регенерации.

Ширина полосы пропускания измеряется в MHz и характеризует, какой может быть минимальная длительность импульса, соответствующего отображению одиночной точки на строке изображения, а следовательно и ее размер при предельных скоростях строчной развертки. Заметим, что значения ширины полосы пропускания монитора и предельной скорости передачи импульсов отдельных пикселов видеоадаптером (dot clock, т.е. данные об отображении какого количества пикселей может передать видеоадаптер в монитор в секунду; измеряется тоже в MHz) в комбинации определяют резкость изображения по горизонтали на предельных разрешениях и частотах разверток. При примерно равных значениях этой частоты общая предельная частота системы видеокарта-монитор будет примерно на 40% меньше.

Для других соотношений можно для оценок использовать теорему Пифагора для прямоугольного треугольника с катетами из обратных величин частот. Очевидно, что при большой разнице двух таких частот итоговое значение полосы пропускания будет определяться худшим элементом. Поэтому при замене монитора следует внимательно изучить характеристики видеокарты и оценить ее влияние на резкость изображения в используемом вами режиме работы монитора. В противном случае, нарушение резкости при увеличении разрешения или частоты кадров может быть обусловлено недостаточно хорошими характеристиками видеокарты. В любом случае, чем больший запас по dot clock, тем лучше.

Кроме проверки частотных характеристик монитора и поддерживаемых разрешений, следует посмотреть на то, как монитор отображает изображение. Т.е. посмотреть на яркость, контрастность, цветность (включая насыщенность цвета), сведение, геометрию. Прежде чем приступить к проверке качества воспроизводимого изображения, рекомендуется дать монитору прогреться, хотя бы 20 минут. Монитор это дорогая покупка, поэтому торопиться с выбором не стоит.

Практически все современные мониторы имеют цифровую регулировку параметров или комбинированную аналогово-цифровую. Плюс к ручкам или кнопкам управления обычно монитор имеет так называемый OSD (On Screen Display), т.е. меню настроек, которое появляется при его вызове на экране монитора поверх всей отображаемой в данный момент видеоинформации. Через OSD вы, как правило, можете получить информацию о текущем видеорежиме, т.е. о разрешении и частоте регенерации, выбрать язык сообщений меню, размагнитить монитор, выбрать цветовую температуру и т.д.

После изменений в настройках меню, все установки для данного режима автоматически запоминаются (если, конечно, у вас не чисто аналоговый монитор, который вы сегодня вряд ли найдете в продаже). Разумеется, настраивать монитор при проверке нужно в том режиме, в котором вы будете чаще всего работать (если таких режимов несколько, то лучше всего проверить их все).

Для размагничивания маски электронно-лучевой трубки практически во всех современных мониторах предусмотрен специальный контур, по которому пропускается ток в момент включения питания. При этом монитор имеет, как правило, и дополнительную кнопку (или пункт OSD меню) принудительного размагничивания (Degauss). Если после включения вы обнаружили пятна на экране, то два раза нажмите кнопку размагничивания. Если пятна пропали не полностью, то убедитесь, что монитор стоит в стандартном положении:-) и через 25-30 минут повторите процесс размагничивания.

Если в вашем мониторе не предусмотрено такой функции, то просто несколько раз включите и выключите монитор, делая паузу в течение нескольких минут.

Тут стоит добавить важную деталь. Встроенное размагничивание включается только при подаче питания, т.е. после того, как монитор был полностью обесточен, что приводит к интересному факту - блоки ATX не имеют разъема для питания монитора, а при постоянно включенном мониторе (если его не обесточивать, а так все и поступают) размагничивание не работает. Так что о таком нюансе стоит помнить. Отметим, что такой проблемы нет у многих современных моделей мониторов, так как они размагничиваются при переходе из "Stanby" в нормальный режим, т.е. полного отключения питания не требуется.

Если все же размагнитить экран монитора не удалось, то вам следует обратиться в сервисный центр, так как использование кустарных методов может привести к плачевным результатам.

Кроме того, следует отметить, что многие проблемы при использовании монитора возникают из-за видеоадаптера компьютера или из-за интерфейсного кабеля между монитором и видеокартой.

Порой, каким бы это ни показалось смешным, некоторые проблемы с монитором могут быть решены в результате простого переворачивания интерфейсного кабеля или установки новых драйверов видеоадаптера, или же после установки другого разрешения или другой частоты регенерации экрана.

Итак, ввиду того, что монитор является устройством, у которого могут возникнуть проблемы, отрицательно влияющие на комфортность вашей работы за компьютером, при выборе нового монитора следует отдавать предпочтение как можно более качественному монитору, наилучшим образом отвечающего вашим нуждам. В зависимости от типа и марки монитора набор функциональных настроек, позволяющих решать часть или большинство проблем, может существенно отличаться, поэтому при выборе монитора убедитесь, что у него есть достаточный набор изменяемых настроек, которые позволят вам решать некоторые проблемы самостоятельно, без необходимости обращения в сервис-центр. Тем более, что даже если при покупке у монитора отсутствовали недостатки, они могут проявиться впоследствии. По материалам сайта iXBT. Полный текст статьи: http://ixbt.stack.net/video/monitor_guide.html

Другие статьи, обзоры программ, новости

Модуль CRT в Паскале

Модуль CRT в Паскале

Модуль CRT содержит набор процедур и функций управления текстовым выводом на экран дисплея, звуковым генератором и чтением символов с клавиатуры без отображения их на экране, а также переменных и констант режимов работы и цветов.

Монитор может работать в текстовом или графическом режиме с различной разрешающей способностью.

          TextMode (Bw40);                  40 и 80 – количество символов в строке;

TextMode (Bw80).

     Параметры процедуры можно задать  с помощью констант определенных в модуле

                 Bw40  =0;   

LightRed            =12 ;    <Розовый>

Yellow                =14;     <Желтый>

         White                  =15;     <Белый>

Работать можно на всем экране 80х25 или выделать окно с помощью процедуры

Window(X1,Y1,X2,Y2)

умолчанию устанавливается окно (1,80,1,25 ).

Для явного выделения окна после процедуры Window  необходимо выполнить TextBackGround  и ClrScr.

Модуль CRT

Модуль CRT

Назначение модуля CRT программы Турбо Паскаль. Порядок вывода специальных символов. Переменные управления выводом на дисплей и работой клавиатуры. Процедуры работы с экраном и позиционирования курсора. Порядок настройки цвета и подачи звуковых сигналов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже. Подобные документы

Функции ввода с клавиатуры и вывода на экран, алгоритм вывода чисел. Генерация звуковых сигналов в ПЭВМ. Принципы работы видеосистемы: адресация и режимы работы адаптера CGA, режим работы дисплея. Таблица векторов прерываний в работе клавиатуры.

отчет по практике [700,4 K], добавлен 23.11.2010

Использование графических возможностей Турбо Паскаля, подключение графического модуля Graph. Графические функции и процедуры. Общая структура графической программы. Построение фигур, определение цветов и стилей, работа с текстом, сообщения об ошибках.

реферат [109,3 K], добавлен 28.04.2010

Основные сведения о системе программирования Турбо Паскаль. Структура программы на Паскале и ее компоненты. Особенности и элементы языка Турбо Паскаль. Порядок выполнения операций в арифметическом выражении, стандартные функции и оператор присваивания.

лекция [55,7 K], добавлен 21.05.2009

Развертывание системы на жестком диске, диалоговая система программирования Турбо Паскаль, запуск программы и выполнение задания. Функциональные клавиши и их назначение. Текстовый редактор, средства создания и редактирования текстов программ, курсор.

реферат [18,6 K], добавлен 01.04.2010

Особенности программирования на языке Паскаль в среде Турбо Паскаль. Линейные алгоритмы, процедуры и функции. Структура данных: массивы, строки, записи. Модульное программирование, прямая и косвенная рекурсия. Бинарный поиск, организация списков.

отчет по практике [913,8 K], добавлен 21.07.2012

Лингвистическая концепция языка Паскаль. Интегрированная инструментальная оболочка. Основы построения программ на ТП 7.0. Алфавит языка и специфика использования символов. Простые типы данных: константы и переменные. Циклические конструкции и операции.

курсовая работа [284,6 K], добавлен 02.07.2011

Общая характеристика языка программирования Турбо Паскаль: операторы, циклы, файлы. Процедуры и функции модуля Crt. Структурная и функциональная схема программы учета учащихся, таблица идентификаторов. Список и описание использованных подпрограмм.

курсовая работа [702,9 K], добавлен 29.01.2011

Правила описания множественных типов данных, приемов использования множеств и операций над множествами в Паскаль-программах. Разработка в Турбо Паскале программы вывода всех согласных букв, которые входят хотя бы в одно слово заданного предложения.

контрольная работа [30,8 K], добавлен 25.12.2010

Особенности использования графического режима в среде Турбо Паскаль. Типы драйверов. Инициализация графики. Построение изображения на экране. Графические примитивы и работа с текстом. Разработка и реализация программ в среде Турбо Паскаль "Графика".

курсовая работа [1,2 M], добавлен 26.09.2014

Освоение технологии структурного программирования и применения стандартных методов работы с одномерными массивами при разработке и создании программы на языке Турбо Паскаль. Разработка программы методом пошаговой детализации с помощью псевдокода.

реферат [276,9 K], добавлен 27.02.2008

В модуле CRT реализованы специальные процедуры и функции для работы с текстовой информацией на дисплее, позволяющие:

o управлять текстовыми режимами,

o организовывать окна вывода на экран,

o настраивать цвета символов на экране,

o управлять курсором.

В модуль включены функции опроса клавиатуры и процедуры управления встроенным динамиком.

Модуль CRT реализует шестнадцать процедур и четыре функции, его размер составляет не более ЗК. Его стандартное местонахождение - системная библиотека TURBO.TPL.

Для подключения модуля достаточно включить его в директиву USES в самом начале программы:

При подключении модуля CRT перед выполнением основного блока программы происходит переназначение стандартных файлов, как если бы выполнились операторы:

МОДУЛЬ CRT

Turbo Pascal 7.0. Модуль CRT.

1. Ошибка "200".

Стандартный модуль CRT используется во многих программах на Turbo Pascal. Но при запуске этих программ на современных компьютерах, оснащённых быстрыми процессорами, возникает ошибка "Деление на нуль"

Runtime error 200 at xxxx:xxxx.

Проблема 200 получила своё название по двум причинам. Во-первых, она начинает проявляться на процессорах с тактовой частотой 200 MHz. Во-вторых, в Turbo Pascal ошибка "Деление на нуль" имеет номер 200.

Разберёмся теперь в причинах возникновения этой ошибки. В модуль CRT включена процедура DELAY, которая производит задержку выполнения программы на заданное число миллисекунд. Она основана на выполнении двух вложенных циклов. Внешний цикл имеет пределы от заданного числа миллисекунд до нуля. Таким образом, легко понять, что внутренний цикл должен выполняться ровно 1 миллисекунду.

Стандартная процедура DELAY:

8BDC mov bx,sp

368B4F04 mov cx,ss:[bx+04] ; число оборотов внешнего цикла

E313 jcxz <2>

8E06. mov es,Seg0040

33FF xor di,di

268A1D mov bl,es:[di]

<1> A1. mov ax,DelayCnt ; число оборотов внутреннего цикла

7205 jb <4>

263A1D cmp bl,es:[di]

74F3 je <3>

В модуле CRT есть инициализационная часть, в которой производятся все необходимые подготовки, в том числе и расчёт, сколько же раз должен выполниться внутренний цикл, чтобы отсчитать 1 миллисекунду.

F7D2 not dx ; DX:AX = число оборотов

; внутреннего цикла за 55 мс

B93700 mov cx,0037 ; CX = 55

F7F1 div cx ; делим DX:AX на 55, чтобы узнать,

; сколько оборотов должен делать

; цикл, чтобы отсчитать 1 мс

A3. mov DelayCnt,ax ; запоминаем AX

Для этого производятся следующие действия:

1) Дожидаемся начала очередного тика системного таймера (адрес в BIOS: 0040:006С).

2) Помещаем в DX:AX FFFF:FFE4 (начинаем с максимума, так как внутренний цикл,

выполняясь, уменьшает DX:AX).

3) Вызываем внутренний цикл.

4) После выполнения внутреннего цикла и команд not ax; not dx в DX:AX находится

число оборотов цикла за 1 тик таймера (55 миллисекунд).

5) Далее, чтобы узнать, какое же число оборотов должен делать цикл, чтобы

отсчитать 1 мс, DX:AX делится на 55.

6) И полученное число запоминается, чтобы в дальнейшем использоваться

процедурой DELAY.

Вспомним теперь, как работает ассемблеровская инструкция DIV. Она делит DX:AX на указанный аргумент (в нашем случае CX, который равен 55) и результат заносится в AX (в DX - остаток, но он нас сейчас не интересует). На процессорах, частота которых 200 MHz и выше, DX:AX, делённое на 55 оказывается больше 65535 и, поэтому, результат не может поместиться в AX. Происходит так называемое переполнение при делении. В случае переполнения (или в случае деления на нуль) автоматически вызывается прерывание INT 00. В Turbo Pascal (в модуле System) это прерывание "перехвачено". Новая процедура обслуживания INT 00 выводит строку Runtime error 200 at xxxx:xxxx. и завершает работу программы. И, несмотря на то, что к ошибке №200 мы привыкли как к делению на нуль, в этом случае имеет место не деление на нуль, а переполнение при делении.

Выход из этой ситуации.

В Internet'е можно найти много публикаций, где предложены различные варианты решения данной проблемы. Один из вариантов такой. В состав Borland Pascal 7.0 входит исходный текст модуля CRT, в него следует внести некоторые изменения, описанные ниже и перекомпилировать заново. Перед внесением изменений следует сделать резервную копию CRT.ASM.

На данной Web-страничке находится архив NEW_CRT.ZIP, в который включены уже исправленные модули CRT.TPU и CRT.TPP.

Рассмотрим далее, какие же изменения внесены в файл CRT.ASM:

1) Определение переменной DelayCnt (строка 45).

Убрана строка:

DelayCnt DW ?

Вставлена строка:

Что такое crt

24. Модуль crt и создание консольных интерфейсов

Модуль c rt содержит процедуры и функции, предназначенные для работы с экраном консоли в текстовом режиме. Как и ряд других стандартных модулей, crt встроен в компилятор и содержится в файле t urbo.tpl.

Экран в текстовом режиме разбивается на отдельные строки, а каждая строка -- на позиции, причем в каждую позицию может быть помещен только 1 символ из набора ASCII.

Для полного описания экранной позиции кроме символа следует задать еще и атрибут. содержащий информацию о цвете символа и фона на экране. Символ и атрибут занимают в памяти по 1 байту. Структура байта-атрибута показана на рис. 24.1.

Рис. 24.1. Структура байта-атрибута консоли

Старший бит 7 управляет мерцанием символа (символ на экране мерцает, если он установлен в 1), биты 4-6 содержат цвет фона (кодируется двоичными числами от 0 до 7 включительно), а биты 0-3 -- цвет  символа  (от 0 до 15). Разумеется, программисту обычно не приходится заполнять байт атрибута по битам, для этого есть стандартные коды цветов. Основные цвета кодируются цифрами от 0 до 15, причем цвет текста может быть любым, а цвет фона -- только из первых 8 цветов. Все цвета описаны в табл. 24.1.

Табл. 24.1. Коды и наименования стандартных цветов

Мониторы электронно-лучевые (CRT)

6.2.5. Мониторы электронно-лучевые ( CRT)

ЭЛТ - электронно-лучевая трубка, CRT - Cathode Ray Tube.

Изображение на экране CRT -монитора получается в результате облучения люминофорного покрытия остронаправленным пучком электронов, разогнанных в вакуумной колбе. Для получения цветного изображения люминофорное покрытие имеет точки или полоски трех типов, светящиеся красным, зеленым и синим цветом.

Чтобы на экране все три луча сходились строго в одну точку, и изображение было четким, перед люминофором ставят маску – панель с регулярно расположенными отверстиями или щелями. Чем меньше шаг между отверстиями (шаг маски), тем четче и точнее полученное изображение. Шаг маски измеряют в долях миллиметра. В настоящее время наиболее распространены мониторы с шагом маски 0,25-0,27 мм.

Одним из главных параметров монитора является частота кадровой развертки, называемой также частотой регенерации (обновления) изображения (частота смены изображения на экране). Она показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров). Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать за монитором непрерывно. Этот параметр зависит не только от монитора, но и от свойств и настроек видеоплаты, хотя предельные возможности определяет все-таки монитор. При частоте регенерации порядка 60 Гц мелкое мерцание изображения заметно глазу. Сегодня такое значение считается недопустимым. Минимальным считают значение 75 Гц, нормативным – 85 Гц и комфортным – 100 Гц и более.

Размер монитора измеряется между противоположными углами трубки кинескопа по диагонали. Единица измерения – дюймы. Стандартные размеры: 14"; 15"; 17"; 19"; 20"; 21". В настоящее время наиболее универсальными являются мониторы размером 17 и 19 дюймов.

Разрешающая способность монитора характеризуется числом точек выводимого изображения. Принято указывать отдельно количество точек по горизонтали и вертикали. Например, разрешение монитора 1024x768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768.

Для CRT -мониторов разрешение перенастраивается программно. Следует учесть, что чем большее разрешение установлено, тем ниже будет частота регенерации, т.к. общий объем выводимого изображения при увеличении разрешения увеличивается, следовательно, обновление кадров происходит медленнее. Чем большее разрешение установлено, тем мельче будет каждый объект на экране монитора, и тем больше будет рабочая поверхность экрана, т.е. вы сможете удобно расположить на экране большее количество окон.

Типовые разрешения мониторов.

Рис. 30. Соотношение между стандартными разрешениями монитора.

Все, что нужно знать о фронтальных проекторах

Все, что нужно знать о фронтальных проекторах

Что такое фронтальный видеопроектор?

Фронтальный видеопроектор это электронное устройство, которое преобразует видеосигналы изображения в световой поток, проецируемый и фокусируемый на расположенный на некотором расстоянии от проектора экран. В отличие от кинопроекторов, в отдельных типах фронтальных проекторов есть лишь несколько движущихся частей, а качество изображения определяется значительно большим количеством настроек, как в пользовательском, так и сервисном меню.

Краткая история фронтальных проекторов

Самые первые проекторы использовали систему с модуляцией света на масляной пленке и представляли собой аналоговое электронно-лучевое и оптическое устройство для управления мощным световым потоком, создающим изображение на очень большом экране. На основе серийно выпускавшейся швейцарской системы «Эйдофор» и российского аналога Аристон был, в частности, реализован первый большой телевизионный экран (чёрно-белый) Центра управления космическими полётами СССР и американского NASA.

Основной узел такой проекционной системы представляет собой зеркало, поверхность которого покрыта маслом и специальной пленкой. Под действием электрического заряда при сканировании зеркала электронным лучом масляная поверхность деформируется и становится «шершавой», за счет чего отдельные участки по-разному отражают направленный от специальной ксеноновой лампы световой поток. Отраженный свет создает на экране гигантское изображение.

Д-р Фриц Фишер и швейцарский федеральный технологический институт задумали этот проектор еще в 1939 г. (в г. Цюрихе) и первый прототип был представлен в 1943 году. На экран подобного проектора выводилась вся информация NASA в период космической программы Аполлон (1968 г.).

В нашей стране аналог Эйдофор под названием Аристон был разработан в Московском научно-исследовательском телевизионном институте и впоследствии производился на Львовском телевизионном заводе.

Клосс Novabeam . Этот проектор был создан знаменитым изобретателем аудио и видео техники Генри Клоссом на основе его новаторских работ в области CRT проекторов в компании Адвент с 1972 года. В проекторе Клосса использовалась CRT трубка специальной конструкции с встроенной оптической системой. Это нововведение позволяло улучшить фокусировку светового потока и получить более детальное изображение с более точной цветопередачей. К тому же общая конструкция получилась более дешевой, что сделало проектор Novabeam наиболее популярной проекционной системой начала 1980-х годов. Портативная модель для проецирования на белую стену или экран была представлена в 1982 году и оснащалась входом для подключения компьютера, она позволяло создавать первые домашние и офисные фронтальные проекционные системы с разрешением VGA (640 х 480i).

Первые цифровые проекторы . Ограничения аналоговой технологии первых фронтальных CRT проекторов, которые доминировали до конца двадцатого века, удалось преодолеть исследователям американской компании Hughes и японской JVC, на основе разработок которых в 1996 году была образована единая компания Hughes-JVC Technology Corp. Совместными усилиями была создана проекционная технология – ILA (Imaging Light Amplifier), представляющая собой аналоговую отражательную LCD систему в сочетании с инфракрасной CRT технологией для формирования изображения. Эта система предоставляет неслыханный световой поток (более 12000 люмен) и разрешение (2000х1200) в проекторе JVC D-ILA-12K стоимостью $ 250000.

В это же время другая американская компания Texas Instruments разработала и первую цифровую систему – DMD (Digital Micro Mirror Device), ставшую основой для проекторов с технологией DLP (Digital Light Processor). В технологии DLP для создания изображения используются миллионы крошечных поворачивающихся зеркал. Начиная с 1999 года на основе технологий DLP и LCOS (аналоги D-ILA и SXRD) началась замена аналоговых проекционных систем в кинотеатрах и домашних установках.

Многие современные проекторы поддерживают формат 1080р. С момента появления HDTV телевизоров от компании Zenith в США (1996 г.), многие проекторы также получили приставку HD, хотя и не все обладают полным HD разрешением (Full HD 1920x1080p), некоторые имеют разрешение 720p (1280х720p) или 1080i (1920х1080 г). Более высокое разрешение требует повышенной вычислительной мощности и скорости обработки данных, что было не позволительной роскошью не далее, как до 2005 года. Для более точного воссоздания сигнала с проектором часто используются внешние процессорные блоки. И даже сегодня далеко не все фронтальные проекторы могут предложить Full HD формат, но ситуация скорее всего изменится в ближайшее время.

Технологии

Что такое CRT?

Электронно-лучевая трубка (ЭЛТ) или по-английски CRT представляет собой устройство в виде вакуумной трубки с излучающей луч электронной пушкой и люминофорным экраном, который в телевизорах используется для просмотра изображения. Еще в 1939 г. в США началось черно-белое коммерческое телевещание с использованием первых ЭЛТ телевизоров, которые имели экран примерно в девять дюймов по диагонали. Однако, Вторая Мировая война задержала развитие телевидения примерно до 1952 года. Реально продаваемые домашние цветные ЭЛТ телевизоры появились в 1964 году. Их конкуренцию с публичными кинотеатрами основе других дисплейных технологий продолжают современные HDTV, получившие увеличенный до 40 и более дюймов экран с соотношением сторон 4:3 и 16:9.

В 1971 году компания Sony и Генри Клосс, работавший тогда в компании Адвент, разработали первые коммерческие проекционные CRT телевизоры с системой фронтальной проекции. Началась эпоха домашнего кино с просмотром на большом настенном экране в несколько метров по диагонали. Самые большие телевизионные трубки (кинескопы) в то время были размером всего 25 дюймов по диагонали экрана.

Что такое DLP?

Разработанная компанией Texas Instruments в 1996 году проекционная система Digital Light Процессор (DLP) состоит из миллионов и миллионов микроскопических зеркал, (первоначально она называлась DMD – Digital Micro-Mirror Display). Луч от источника белого света направляется на DLP чип, каждое микрозеркало которого отражает или поглощает свет, соотвествующий одному пикселю на экране. Система имеет наивысший на сегодняшний день для домашних систем коэффициент контрастности и частоту обновления картинки (120 000 Гц).

Что такое D-ILA?

В 1999 году компания JVC представила проекторы на основе разработанной технологии D-ILA (Direct Imaging Light Amplifier) с использованием отражения от специальной LCD матрицы. Первоначальное название было LCoS (Liquid Crystal on Silicon). Специальная конструкция матрицы позволяет увеличить коэффициент заполнения, т.е. плотность расположения пикселей на отражающей матрице и экране. Коэффициент заполнения у D-ILA проекторов составляет до 91 процентов, тогда как у LCD проекторов он равен 60%, а у DLP технологии этот показатель доходит до 88%. LCoS стала второй технологией, позволяющей получать 4K разрешение.

Что такое SXRD?

Версия технологии LCoS в исполнении Sony называется SXRD (отражающий микро-дисплей на кремниевых кристаллах). Коэффициент заполнения у этой технологии равняется 92 %, за счет этого отдельные пиксели почти неразличимы, изображение на экране имеет эффект «бесшовности». Частота обновления экранной картинки составляет 8 микросекунд. На основе SXRD технологии был создан первый проектор в разрешении 4К, имеется потенциальная возможность удвоить разрешение и до 8К.

Что такое LCD?

LCD (Liquid Crystal Display) – жидкокристаллический дисплей на основе жидких кристаллов кремния, которые под действием управляющего напряжения могут становиться прозрачными или непрозрачными. Впервые LCD дисплеи стали широко использоваться в наручных часах, заменив светодиодные (LED индикаторы). Сейчас многие мониторы, телевизоры и проекторы используют для получения картинки источник света проходящий сквозь LCD панель, в отличие от отражающей технологии, как в случае с LCoS. По всей вероятности, вы читаете этот текст на LCD мониторе компьютера. Специальные LCD матрицы используются и в проекторах.

Многочиповые и одночиповые проекторы

В всех фронтальных (и тыловых) цифровых проекторах вся демонстрируемая на экране цветовая палитра получается за счет смешения трех базовых цветов (красный, зеленый и синий). В одночиповых DLP системах, диск с отверстиями (называемый также цветовым колесом) очень быстро вращается, последовательно выбирая для проецирования три основных цвета. Этот метод может создавать заметный для некоторых людей эффект радуги, что портит общее впечатление от просмотра.

Свободны от этого недостатка трехчиповые DLP проекторы, где для каждого первичного цвета используется отдельный DLP чип.

HDMI входы и кабели

С повсеместным переходом в 2003 году к цифровому телевидению для соединения источников сигналов и дисплеев был разработан интерфейс, названный HDMI (High-Definition Media Interface). По существу HDMI обладает теми же электрическими характеристиками, что и DVI-D – интерфейс для подключения дисплеев к компьютеру. Но HDMI использует 26-контактный разъем гораздо меньших размеров и поддерживает технологию защиты от копирования – HDCP (High Definition Copy Protocol). HDMI в настоящее время используется для соединений между такими защищенными от копирования устройствами высокого разрешения, как Blu-ray и HD-DVD плееры, кабельные и спутниковые телеприемники и телевизоры.

Видеообработка

Видеообработка используется при преобразовании одного разрешения (например, VGA 640х480p) в другое, как правило, более высокое разрешение (например, Full HD 1920х1080 р), а также для изменения соотношения сторон изображения (например, увеличение, полное заполнение экрана или широкоэкранный формат), для удаление шумов и артефактов, чтобы получить более четкое, более чистое изображение. Первой компанией создавшей для бытовой видеотехники видеопроцессоры хай-энд уровня была Faroudja. В 1997 году видеопроцессоры в сочетании с проектором Runco позволяли создавать изображение впечатляющего качества из телепрограмм SD формата и с DVD дисков. Сейчас, по крайней мере, 20 компаний производят видеопроцессоры для обработки и масштабирования видео.

Внутренняя видеообработка

Начиная с появившихся в 1999 году первых портативных промышленных цифровых проекторов, стала очевидной необходимость увеличения разрешения или, иначе говоря, масштабирования видеозаписей. Дело в том, что эти первые цифровые проекторы имели разрешение (2048х1200р), которое было значительно выше, чем используемое в то время стандартное 800х600р. Имеющаяся в современных проекторах возможность повышения разрешения позволяет получить максимальный размер изображения и снизить артефакты.

Внешняя видеообработка

Необходимость во внешней видеообработке сигналов возникла с появлением источников сигнала с разрешением выше чем VGA и соответствующих мониторов около 1996 года. Желание масштабировать видео информацию формата 640х480i до компьютерного разрешения (800х600р) и выше потребовало тогда сложных АЦП и ЦАП преобразователей, способных работать в гигагерцовом диапазоне. Для решения такой задачи в режиме реального времени порой требовалась целая комната с компьютерами и другим оборудованием. Такие компании как Faroudja и Snell & Wilcox смогли разработать более компактное оборудование, вначале для военных целей, а со временем появились и коммерческие версии, от Faroudja и Runco в 1997 году.

Установка и настройка видеопроекторов

Некоторые проекторы имеют возможность для крепления к потолку, что максимизирует обзор экрана для аудитории и упрощает настройку проектора. Если проектор должен быть скрыт, когда он не используется, часто применяют конструкцию с моторизованным лифтом. Иногда, требуется дополнительное внешнее охлаждение или специальная система вентиляции, так как количество тепла выделяемого от супер ярких больших ламп в корпусе небольшого домашнего проектора может стать чрезмерным.

Проекционное расстояние

В целом это отношения между увеличением объектива и расстоянием от проектора до экрана. Типичное значение составляет 2:1 и означает, что расстояние от проектора до экрана должно равняться двойной ширине экрана. Поэтому, если ширина экрана 3 метра, проектор должен быть расположен в 6 метрах от него.

Световой поток

Как определено стандартами SMPTE и ANSI световой поток домашних проекторов должен составлять от четырех до 96 фут-ламберт (1 фут-ламберт=1 люмену на 1 кв. фут), используемые в проекторах лампы должны обеспечивать яркость 100 - 10000 люмен. Очевидно, что световой поток с пониженным уровнем яркости для достижения удовлетворительного коэффициент контрастности требует специального затемненного помещения, иначе изображение будет казаться размытым. Более яркий световой поток способен создавать на экране изображение, которое можно смотреть и при дневном освещении. Выбор яркости варьируется в зависимости от размера экрана, проекционного расстояния, освещенности и личного вкуса. В городских кинотеатрах требуемый уровень светового потока составляет 16 фут-ламберт.

Трапецеидальные искажения

Эти характерные погрешности изображения проявляется, когда проектор не верно установлен по отношению к экрану. Трапецеидальными искажениями называют эффект, когда одна из сторон экранного изображения оказывается шире противоположной, в результате чего объекты с одной из сторон экрана становятся выше или толще. В некоторые проекторы (начиная с 2000 г.) встраивают цифровую функцию коррекции трапецеидальных искажений, которая за счет видеообработки сигнала позволяет скорректировать геометрию изображения. Но этот метод приводит к побочному эффекту снижения разрешения.