Софт-Архив

Видеопамять Это Что img-1

Видеопамять Это Что

Рейтинг: 4.2/5.0 (1852 проголосовавших)

Описание

Руководство покупателя видеокарты: выбор объема видеопамяти

Руководство покупателя игровой видеокарты Последнее обновление от 28.09.2012 Выбор объёма видеопамяти

Производительность видеокарты определяется не только мощностью самого GPU. Любому чипу нужен большой объём выделенной памяти с высокой пропускной способностью при записи и чтении различных данных: текстур, вершин, содержимого буферов и т. п. Даже самый мощный видеочип можно «придушить» слишком малым объёмом видеопамяти, да ещё с медленным доступом, поэтому характеристики устанавливаемых микросхем памяти также являются одними из важнейших параметров современных видеокарт.

Микросхемы памяти, количество которых на некоторых моделях видеокарт достигает 24 штук, обычно располагаются на печатной плате вокруг видеочипа, на одной или обеих сторонах. В некоторых случаях для них не используется даже пассивное охлаждение, но часто применяется общий кулер, охлаждающий и GPU и память, а иногда и отдельные радиаторы. Вот так микросхемы памяти выглядят на GeForce GTX 590 со снятым устройством охлаждения:

Современные видеокарты оснащаются различным объемом локальной видеопамяти, но обычно он начинается от 512 МБ и может достигать 3 ГБ на один GPU (с удвоением объёма на двухчиповых видеокартах). Чаще всего на видеокарты low-end и mid-end сейчас ставят 1 ГБ памяти, а на high-end — 1,5-3 гигабайта на чип, но есть и исключения. Так, карты самого низкого уровня могут иметь и 512 МБ более быстрой памяти GDDR5, и 1-2 ГБ медленной DDR3.

Чем больше выделенной памяти установлено на видеокарте, тем больше данных (тех же текстур, вершин и буферов) можно хранить в ней, не используя медленный доступ к ОЗУ компьютера. Причем, больше всего места занимают текстуры и различные буферы, а вот собственно геометрические данные обычно не слишком объёмны. Рассмотрим скриншоты из довольно старой игры Call of Duty 2 с разными установками качества текстур:

В этой игре, как и во многих других, автоматически настраивается качество текстур под имеющийся объём текстурной памяти. В данном случае режим Extra автоматически выставляется на видеокартах с 320-1024 МБ памяти, High или Normal — на 256 МБ, в зависимости от настроек разрешения и уровня антиалиасинга, а Low — на самых слабых GPU с 128 МБ. И даже если вы выставите максимальные настройки вручную, то на видеокарте с недостаточным объёмом видеопамяти для хранения ресурсов будет использоваться часть системной памяти, что приведет к серьёзным "тормозам" и отсутствию комфорта и плавности в игре.

В последнее время рост требований к объёму видеопамяти сильно замедлился, и виновато в этом засилие мультиплатформенных игр. Современные игровые консоли имеют лишь по 512 МБ памяти и поэтому разработчики игр ориентируются именно на этот уровень. Конечно, в ПК-версиях игр зачастую предусмотрены как текстуры большего разрешения, так и высокое разрешение рендеринга, что требует куда большего объёма видеопамяти. Но всё равно, объём памяти в 1 ГБ до сих пор вполне приемлем в подавляющем большинстве случаев. Кроме экстремальных настроек сглаживания и разрешения, вроде MSAA 8x и 2560×1600, соответственно.

Но даже уже устаревшим мультиплатформенным играм не хватает 512 МБ, они довольно требовательны к объёму видеопамяти, занимая до 600-700 МБ. И всё же, на данный момент минимальным необходимым объёмом локальной памяти для игровых видеокарт мы считаем 1 ГБ. Он же является и оптимальным для большинства моделей. Кроме видеокарт NVIDIA, имеющих 320- и 384-битную шины памяти — у них объём видеопамяти ещё более подходящий — 1280-1536 МБ. Но для топовых моделей уже востребован и больший объём, порядка 2 ГБ, что предлагают видеокарты серии Radeon HD 6900, и 3 ГБ, ставящиеся на некоторые модификации GeForce GTX 580. Тем более, что видеокарту всегда лучше подбирать с небольшим запасом.

К слову, в случае интегрированных видеоядер и устаревших дискретных видеокарт бывает так, что указанное на коробке количество видеопамяти не равно объему установленных на плату микросхем. Такое было ранее в случае видеоплат low-end, работающих с частью системной памяти при помощи технологий TurboCache (NVIDIA) и HyperMemory (ATI):

В характеристиках видеокарт с поддержкой этих технологий в маркетинговых целях указывался объём памяти (в т. ч. и часть ОЗУ), который может использоваться видеочипом, равный 128 МБ, в то время как в реальности на них установлен меньший объем — 16-32 МБ. Поэтому всегда нужно внимательно читать материалы нашего сайта, чтобы не попадаться на подобные ухищрения в будущем. Но пока что можно жить спокойно, ведь сейчас в таких видеокартах уже нет никакого смысла, их нишу прочно заняли интегрированные чипсеты.

С имеющимися разновидностями видеокарт по объёму локальной памяти мы разобрались, но ведь объём памяти для видеокарт — это еще не всё, и даже зачастую не главное! Очень часто бывает так, что на дешёвые видеокарты ставят очень большое количество памяти, чтобы нарисовать красивые цифры на их коробках и в описаниях готовых систем (поэтому их так любят сборщики — вспомните слоганы вроде «4 ядра, 4 гига»), с расчетом на то, чтобы они лучше продавались. Но для слабых видеокарт в повышенном объёме памяти никакого смысла нет, они ведь всё равно не смогут выдавать приемлемую частоту кадров на высоких настройках, в которых и используется большие объёмы текстур и геометрии.

Продавцы часто используют объём видеопамяти в качестве основной характеристики видеокарт, и это вводит в заблуждение простых покупателей, плохо знакомых с реальным положением дел. Сравним производительность решений с разным количеством видеопамяти на примере двух одинаковых видеокарт Radeon HD 6950, имеющих единственное отличие — на первой из них установлено 1 ГБ видеопамяти, а на второй — 2 ГБ. Любой менеджер по продажам скажет вам, что вторая видеокарта значительно лучше первой, кроме случаев, когда в магазине есть модели только с 1 ГБ памяти и редчайших случаев честных и компетентных продавцов. А что получается на самом деле? Есть ли великая разница? Посмотрим на цифры, полученные в игре Metro 2033, являющейся одной из наиболее требовательных:

Как видите, в большинстве игровых режимов объём видеопамяти влияет на производительность не слишком значительно — разница не превышает 5-6%. То же самое получается и в других играх, даже современных и ПК-эксклюзивных (что сейчас большая редкость). Лишь в сверхвысоком разрешении и с максимальными настройками качества появляется значимая разница, когда модель с 1 ГБ заметно отстаёт от более дорогой карты с 2 ГБ памяти — на 27%.

Казалось бы — вот оно, ради чего нужно платить деньги! Но посмотрите на цифры кадров в секунду при разрешении 2560×1600 — разве 18,9 FPS можно назвать комфортной скоростью? Нет. Что 14,9 FPS, что 18,9 FPS — эти цифры одинаково не имеют практического смысла, никто не будет играть с настолько дёрганой частотой смены кадров. Поэтому, с некоторым допущением, можно считать, что разница в объёме видеопамяти между 1 ГБ и 2 ГБ сейчас незначительно сказывается на скорости рендеринга, и сравнивать даже топовые видеокарты по количеству памяти не нужно.

Но речь шла только об объёмах памяти выше 1 ГБ. Да и 512 МБ для плат нижнего ценового диапазона сейчас вполне достаточны. В этих случаях, примеры, когда объём памяти начинает сказываться на производительности, весьма редки. Разработчики игровых приложений рассчитывают используемые в играх ресурсы и графические настройки так, чтобы все данные входили в локальную видеопамять наиболее распространённых на рынке видеокарт. То есть, сейчас это уровни 512 МБ (для low-end) и от 1 ГБ для всех остальных видеокарт, включая и высокие разрешения и максимальные настройки качества. А если видеопамяти меньше, то современные игры или будут тормозить или даже не дадут выставить максимальные настройки.

Но этот расчётный объем видеопамяти у игровых разработчиков растет, даже несмотря на засилие консолей и мультиплатформы. Ещё пару лет назад было вполне достаточно 512-640 МБ, а теперь появились проекты, в которых этот объёма недостаточно. Но даже среди самых последних игр таких проектов пока мало, но они уже появляются. Поэтому, в случае не слишком большой разницы в цене между видеокартами с разными объёмами памяти при прочих равных условиях (частота и ширина шины), следует покупать модель с большим объёмом. Но без погони за цифрами — никакой low-end карте не поможет пара гигабайт медленной DDR3-памяти. Такой объём ей на данный момент просто не нужен. Зато важен другой параметр, о котором мы поговорим далее.

Подробнее о пропускной способности памяти

Ещё одна важная характеристика, о которой мы уже писали — это пропускная способность памяти (ПСП), которая зависит как от частоты работы памяти, так и от ширины шины. Этот параметр определяет количество данных, которые теоретически можно передать в память или из памяти за единицу времени. Другими словами, это скорость, с которой графическое ядро может записывать и считывать различные данные в локальную видеопамять. Соответственно, чем быстрее считываются текстурные, геометрические и прочие данные, и чем быстрее записываются в буфер рассчитанные пиксели, тем выше будет общая производительность.

Пиковая пропускная способность памяти рассчитывается довольно просто — это произведение «эффективной» частоты памяти на количество данных, передаваемых за такт (ширина шины памяти). Например, для GeForce GTX 580 с шиной 384 бит и частотой видеопамяти 1002(4008) МГц, ПСП будет равна:

1002 МГц × 4 (передача данных с учетверённым темпом) × 48 (384/8 байт за такт) ≈ 192,4 ГБ/с

Если с эффективной частотой памяти всё понятно, её обычно везде пишут, и на коробках, и в характеристиках прописывают прямо, то с шиной всё несколько сложнее, ведь она далеко не всегда явно указывается производителем, поэтому на неё нужно обращать особое внимание. Большинство современных видеокарт используют 128-битную или 256-битную шину памяти на один GPU, топовые модели могут иметь до 384 бит, а некоторые недорогие платы оснащаются лишь 64-битной шиной.

Естественно, что последнее нигде широко не афишируется. Для производителя узкая шина и дешевле в производстве, и позволяет удобнее масштабировать производительность решений линейки. И две одинаковые видеокарты с одинаковыми частотами, но с разной шириной шины памяти, будут сильно отличаться по производительности. Та, у которой ПСП больше, может обрабатывать большее количество данных, по сравнению с картой с меньшей разрядностью шины, хотя сами GPU у них совершенно одинаковые.

Рассмотрим очень жизненный пример — модель GeForce GTS 450 с двумя разными типами памяти, GDDR5 на более дорогой модели и DDR3 на дешёвой. Во время выхода на эту видеокарту ставили исключительно быструю GDDR5-память с приличной пропускной способностью. Но когда её время прошло и она спустилась в нижний ценовой диапазон, производители начали экономить, выпуская варианты с DDR3-памятью, которая гораздо дешевле. Результат подобной экономии можно пронаблюдать на следующей диаграмме:

Как видите, всё очень печально для DDR3-варианта — даже в далеко не самой новой игре разница в различных разрешениях экрана составляет от 50 до 70%! То есть, мощность GPU во всех протестированных условиях ограничена медленной видеопамятью. Модель с DDR3 просто не может считывать и записывать данные с теоретически возможной скоростью. Таким образом производители вместе с компанией NVIDIA снизили себестоимость модели, спустив её ещё ниже в бюджетный сегмент.

Поэтому при выборе между видеокартой с бо́льшим и меньшим объёмом видеопамяти нужно всегда смотреть на тактовые частоты, ширину шины и цены! Так, при большой разнице в ценах между двумя решениями среднего и низшего уровней с 1 ГБ и 2 ГБ памяти нет смысла гнаться за дорогим вариантом — видеокарта такого уровня просто не получит большой прибавки в производительности от увеличенного объёма. Но если приходится выбирать между видеокартами с разным объёмом памяти и разной ПСП, то тут выбор уже не так однозначен, и нужно его совершать исходя из того, какого уровня видеокарта и насколько разнятся их частоты. Не забывая и про цену, естественно.

Например, при выборе между топовой видеокартой с 1,5 ГБ памяти и более высокими тактовыми частотами против такой же карты но с 3 ГБ памяти со стандартными частотами и более высокой ценой на данный момент выгоднее будет первая видеокарта, так как она обеспечит даже бо́льшую производительность почти во всех режимах и условиях, кроме самых высоких разрешений. То же касается, к примеру, GeForce GTS 450 с 1 ГБ GDDR5-памяти против GTS 450 с 2 ГБ DDR3 — первый вариант точно будет быстрее. В большинстве режимов видеокарты бо́льшая частота и ширина шины играет значительно более важную роль, чем бо́льший объём видеопамяти, и только в высоких разрешениях увеличенный объем может серьёзно сказаться на скорости рендеринга.

Другие статьи, обзоры программ, новости

Видеопамять: сколько нужно для комфортной игры

Видеопамять: сколько нужно для комфортной игры

29 июля, 2008 Обзоры ITC.UA 8

При покупке графического адаптера зачастую приходится ориентироваться не только на GPU, который лежит в его основе, но и на объем установленной видеопамяти. Причем разброс здесь очень велик – от скромных 256 МБ до внушительных 2 ГБ. Существуют различные мнения о том, какое же количество мегабайт нужно для комфортной игры. Попробуем разобраться, сколько видеопамяти требуют современные игры, есть ли польза от дополнительного объема и стоит ли за него переплачивать.

При нехватке видеопамяти графические ускорители используют тот же метод, что и ОС при недостатке ОЗУ, с одним лишь отличием – вместо файла на жестком диске (хотя в особо тяжелых случаях есть и такой вариант) для расширения видеопамяти задействуется оперативная память компьютера. Однако даже если бы GPU мог использовать ОЗУ без всевозможных задержек, так же как и локальную, разница в скорости между этими двумя типами очень велика. К примеру, пропускная способность памяти у ATI Radeon HD 3850 составляет около 53 ГБ/с, в то время как у двухканальной DDR2, работающей на частоте 800 МГц, – всего 6,4 ГБ/с.

Если видеопамяти недостаточно, то в первую очередь выгружаются не используемые на текущий момент текстуры. Трудности начинаются, когда они понадобятся снова: их придется доставать из оперативной памяти, а заодно искать другие текстуры, которые можно выгрузить в ОЗУ. Если таких данных много, то наблюдаются притормаживания, особенно заметные в динамичных играх. Тут стоит отметить, что, к сожалению, при использовании обычных тестов среднее количество кадров в секунду не всегда корректно отображает именно комфортность игры. В связи с этим мы несколько адаптировали методику, чтобы добиться более правдивых результатов. Но все равно возьмите на заметку: при одинаковом количестве кадров в секунду карта с медленным чипом, но достаточным объемом памяти обеспечивает более комфортную игру, чем ускоритель с быстрым GPU, но малым объемом памяти.

Гораздо хуже, когда видеопамяти не хватает даже для текстур, находящихся в одном кадре. В такой ситуации довольно сильно падает производительность, ведь мы помним, насколько оперативная память медленней графической, а обращаться к ней приходится при прорисовке каждого кадра.

Методика тестирования

Для нашего исследования мы взяли видеокарты двух серий – ATI Radeon HD 3850 и NVIDIA GeForce 8800 GT, которые предлагаются в версиях с объемом 256, 512 МБ и 1 ГБ. Сразу предостережем желающих купить графический ускоритель с большим объемом памяти – иногда такие модификации имеют меньшие частоты, а на это стоит обращать пристальное внимание. Особенно часто подобным грешат видеокарты бюджетного уровня. Оверклокеров также огорчит и то, что в не самых дешевых моделях зачастую применяют более медленную память, которая хоть и работает на положенных частотах, но разгонный потенциал имеет невысокий.

Так как предоставленные видеокарты Sapphire HD 3850 1G и MSI NX8800GT-T2D256E-OC были изначально форсированы производителями, для создания равных условий мы привели их частоты к референсным значениям, которые составляют 670/1660 МГц для Radeon HD 3850 и 600/1800 МГц для GeForce 8800 GT.

Для измерения количества выделяемой видеопамяти мы применяли утилиту RivaTuner 2.09. Она удобна и проста в использовании, а также позволяет записывать лог и выводить значения загрузки на OSD. Мы рекомендуем эту программу читателям, желающим узнать, сколько памяти расходуется в интересующих их условиях и достаточно ли ее. Единственный серьезный недостаток RivaTuner 2.09 – невозможность отслеживать загрузку для OpenGL-приложений.

В качестве тестов были использованы 3DMark2006, Crysis, Call of Duty 4: Modern Warfare, Unreal Tournament 3, S.T.A.L.K.E.R. Shadow of Chernobyl и Elder Scrolls IV: Oblivion. Остановимся на интересных особенностях подробнее.

Результаты тестов

Для опытных пользователей не секрет, что синтетический бенчмарк FutureMark 3DMark 2006 не критичен к объему видеопамяти. Это полностью подтверждают полученные нами результаты – максимальные значения при стандартном для данного теста разрешении составили 220 МБ для видеокарт на базе HD 3850 и 245 МБ для 8800 GT. В связи с чем странным выглядит некоторое отставание HD 3850 256 МБ от своих коллег.

Видеопамять - Компьютерный форум

Видеопамять

У меня стоит очень старый компьютер. Видеокарта: Radeon 9550 на 128 мб видео памяти. Если не ошибаюсь - это одна из первых видеокарт поддерживающих 2 шейдеры. У моего друга раньше тоже стояла такая же видюха, но у него было 256 мб видеопамяти.

Я подозреваю, что на момент покупки моего компьютера, мне урезали видеопамять через биос, так как сначала у меня было всего 256 мб оперативной памяти и это сделали, чтобы комп не тормозил как не знаю что, ведь видео память берется из оперативы. Но я докупил оперативу и сейчас на моем тракторе 2 гигабайта стоит.Я много слышал, что когда увеличивают видеопамять, имея большой объем ОП, игры (разумеется поддерживаемые) идут чище.

Я решил поставить в биосе на 256 мб видеопамять, но меня смутили две вещи:

1)Я лазил в инете и было написано что есть такая видюха и на 128 мб и на 256мб.

2)Когда я зашел в биос, там был вариант с 256 мб видеопамяти, но также был вариант и с 512 мб, что поистине не возможно для такой старой видюхи. Она вышла где-то году в 2003.

Я как-то и на 256 мб побаиваюсь ставить видеопамять - видюха не тю тю после таких эксперементов?

И еще один вопрос:

Мне система(windows xp pro sp2) и посторонние программы типо евереста и сандры показывают, что у меня стоит две видюхи:

Radeon 9550

Radeon 9550 Secondary

Я разбирал комп - одна у меня видюха, пробывал разрешение на обоих менять - второй воображаемой видюхе на все насрать - разрешение не меняется. Можете сказать что это за.

Типы памяти видеокарты или «видеопамять GDDR»

Типы памяти видеокарты или «видеопамять GDDR»

19.02.2013 12:12

Две совершенно идентичные по характеристикам видеокарты, но с разным типом видеопамяти – будут очень существенно различаться по производительности. Поэтому при выборе видеокарты, также нужно руководствоваться этим параметром. Это мы обязательно рассмотрим в рамках данной статьи на реальных примерах. Также, в очередной раз разрушим миф зависимости типа памяти видеокарты от типа оперативной памяти, в рамках одной системы.

Видеопамять GDDRх. Что это?

GDDR (graphics double data rate memory) – это подвид энергозависимой динамической памяти, которая предназначена для использования в видеокартах. GDDR отличается от DDR (оперативной памяти), хотя принципы и технологии для них являются общими. Среди основных отличий можно выделить: более низкое потребление у GDDR, по сравнению с DDR, к тому же, в GDDR применяются специальные методы управления буфером ввода-вывода, для улучшения пропускной способности. А также масса других улучшений. То есть, можно назвать видеопамять GDDR более продвинутым видом памяти, нежели обычная оперативная память (DDR).

На сегодняшний день, основным типом памяти для видеокарт является GDDR, а именно – версии GDDR3 и GDDR5.

Пожалуй, для наглядности пройдёмся по всем поколениям памяти GDDR, указывая их основные отличия. Это нужно для того, чтобы понимать, почему же стоит отдать предпочтение видеокарте с типом памяти GDDR5, а не GDDR3:

GDDR – первое поколение графической памяти с удвоенной скоростью передачи данных.

GDDR2 – это версия, которая базируется на обычной оперативной памяти DDR2 и отличается от нее, лишь вышеуказанными доработками. Имеет более высокие частотные показатели, по сравнению с GDDR. Аналогично сравнению оперативной памяти DDR и DDR2.

GDDR3 – это дальнейшее развитие графической памяти. Она также построена на модулях памяти DDR2. Технологически, данный тип памяти очень схож с GDDR2, но за счёт более эффективного потребления и тепловыделения, удалось увеличить тактовые частоты.

GDDR4 – тип памяти, который не набрал популярности и стал всего лишь переходной ступенью с GDDR3 на GDDR5. Опять же, базируется на всё той же DDR2. И в очередной раз из основных изменений – повышенные частоты и улучшенное энергопотребление.

GDDR5 – наконец наиболее продвинутый и последний мейнстрим-вариант, среди поколений видеопамяти. За счёт того, что он построен на памяти DDR3, количество передаваемых бит за такт увеличено в два раза (с 2 до 4) по сравнению с GDDR3 и GDDR4. С приходом GDDR5, стало возможным увеличить ПСП в два раза по сравнению с GDDR3, при этом не увеличивая шину.

Выбор видеокарты GDDR3 или GDDR5

С учётом вышеуказанных факторов при выборе видеокарты, стоит, по возможности, отдавать преимущество именно видеокартам с GDDR5-памятью на борту, ибо при равной шине памяти, мы получаем удвоенную пропускную способность.

Возьмем парочку реальных видеокарт, у которых всё идентично, но разные типы памяти:

1. Asus Radeon HD 6670 GDDR5 (128 bit);

2. Asus Radeon HD 6670 GDDR3 (128 bit);

А вот результаты тестов easycom с участием этих двух видеокарт:

Довольно чётко прослеживается преимущество HD 6670 с GDDR 5, как в искусственных тестах 3Dmark, так и в реальной игровой нагрузке.

Независимость типов оперативной памяти от типа памяти GDDR5 в рамках одной системы

Была замечена тенденция вопросов относительно совместимости типов памяти видеокарты и типов графической памяти, в рамках одного компьютера. Хотелось бы в очередной раз развеять данные сомнения (у тех кто сомневается). Как таковой совместимости типов видеопамяти и оперативной памяти нет впринципе.

В системе может быть установлена видеокарта с типом памяти GDDR5 (как мы помним построенная на модулях DDR3) и оперативная память DDR2. Всё будет совместимо и прекрасно работать. Относительно видеокарты, может быть лишь несовместимость с более старой шиной AGP (и соответствующим слотом) на материнской плате, но таких материнских плат осталось очень мало, а про обратную совместимость PCI-express, я думаю, наслышаны практически все.

Видеопамять графических адаптеров

Бумага формата А4

Москва, 2007 г .

СОДЕРЖАНИЕ:

1.Организация РАБОТЫ С ВИДЕОПАМЯТЬЮ……..………..……………………………. 3

2. Видеопамять различных типов графических адаптеров…………………9

2.1. EGA и VGA видеоадаптеры………………………………………………………..9

2.2. SVGA видеоадаптеры……………………………………………………………….13

1. Организация видеопамяти и её использование

В графическом режиме имеется возможность индивидуального управления свечением каждой точки экрана монитора независимо от состояния остальных. Этот режим обозначают как APA (All Points Addressable - все точки адресуемы). В графическом режиме каждой точке экрана пикселу соответствует ячейка специальной памяти, которая сканируется схемами адаптера синхронно с движением луча монитора. Эта постоянно циклически сканируемая (с кадровой частотой) память называется видеопамятью (Video Memory), или VRAM (Video RAM). Последнее сокращение можно спутать с названием специализированных микросхем динамической памяти, оптимизированной именно под данное применение.

Рис.1 Карта видеоадаптера

Процесс постоянного сканирования видеопамяти называется регенерацией изображения, и, к счастью, этого же сканирования оказывается достаточным для регенерации информации микросхемам динамической памяти, применяемой в этом узле. Для программно-управляемого построения изображений к видеопамяти также должен обеспечиваться доступ и со стороны системной магистрали компьютера, причем как по записи, так и по чтению. Количество бит видеопамяти, отводимое на каждый пиксел, определяет возможное число состояний пиксела цветов, градаций яркости или иных атрибутов (например, мерцание). Так при одном бите на пиксел возможно лишь два состояния: светится или не светится. При двух битах на пиксел можно было иметь одновременно четыре цвета на экране. Четыре бита на пиксел (16 цветов), обеспечиваемые адаптером EGA, были достаточны для многих графических приложений (например, графика в САПРах). Пределом мечтаний в свое время было 256 цветов (8 бит на пиксел), как у адаптера VGA. Сейчас остановились на режимах High Color (15 бит - 32768 цветов или 16 бит - 65536 цветов), а для профессионалов - True Color - "верный цвет" (24 бит - 16.7 млн. цветов), реализуемых современными адаптерами и мониторами SVGA. 15 и 24 биты распределяются между базисными цветами R:G:B поровну (5:5:5 и 8:8:8), 16 бит с учетом особенностей цветовосприятия неравномерно (5:6:5 или 6:6:4).

Логически видеопамять может быть организована по-разному, в зависимости от количества бит на пиксел, но в любом случае имеет место отображение матрицы пикселов экрана на биты видеопамяти Bit Mapping. Растровый формат хранения изображений, при котором биты так или иначе отображают пикселы, называется битовой картой (Bit-Map). С точки зрения плотности хранения графической информации этот формат не самый эффективный, но в видеопамяти растрового дисплея из-за напряженности со временем при регенерации изображения иной формат неприемлем. Объем видеопамяти (в битах), требуемый для хранения образа экрана, определяется как произведение количества пикселов в строке на количество строк и на количество бит на пиксел. Так для режима 800 x 600 x 256 цветов требуется 480000 бит или около 469 Кб, а для режима 1024 x 768 True Color - 2.25 Мб. Если физический объем видеопамяти превышает необходимый для отображения матрицы всего экрана, видеопамять можно разбить на страницы области видеопамяти, в которых умещаются образы целого экрана.

Формирование битовой карты изображения в видеопамяти графического адаптера производится под управлением программы, исполняемой центральным процессором. Сама по себе задача формирования процессору вполне по силам, но при ее решении требуется пересылка большого объема информации в видеопамять, а для многих построений еще и чтение видеопамяти со стороны процессора. Видеопамять большую часть времени занята выдачей информации схемам регенерации изображения в довольно напряженном темпе. От этого процесса она свободна только во время обратного хода луча по строке и кадру, но это меньшая часть времени. Если обращение к активной странице видеопамяти со стороны процессора происходит во время прямого хода, и быстродействия схем адаптера недостаточно для того, чтобы это обращение вписалось между соседними выборками процесса регенерации, на экране появится штрих от несчитанной информации пикселов. Если такое обращение происходит часто, на экране появляется "снег", что неприятно. Дожидаться обратного хода по строке или кадру накладно: строчный период коротких (несколько микросекунд) интервалов обратного хода имеет порядок 25 мкс, а кадровый период длинного (миллисекунды) обратного хода имеет порядок 20 мс, в то время как цикл обращения процессора к обычной памяти не превышает сотен (а у современных компьютеров десятков) наносекунд. Так что канал связи процессора с видеопамятью представляет собой узкое горлышко, через которое пытаются протолкнуть немалый поток данных. Причем чем более высокое разрешение экрана и чем больше цветов (бит на пиксел), тем этот поток должен быть интенсивнее. Конечно, при выводе статической картинки это вроде и не страшно, но "оживить" изображение оказывается проблематично.

Выходов из этого затруднения имеется несколько. Во-первых, повышают быстродействие видеопамяти. Во-вторых, расширяют разрядность шин графического адаптера, причем как внутренней (шины видеопамяти), так и интерфейсной, и применяют высокопроизводительные шины (локальную VLB, PCI или AGP). Расширение разрядности позволяет за один цикл обращения передать большее количество бит данных и повысить производительность. Однако если у адаптера, к примеру, VGA, разрядность интерфейсной шины 16 бит, а установлен минимальный объем памяти, при котором используется только 8 бит, то эффективная разрядность интерфейса окажется всего 8 бит. Этим объясняется не совсем очевидный факт, что производительность графического адаптера зависит от объема установленной видеопамяти. В-третьих, повысить скорость видеопостроений можно применением кэширования видеопамяти или теневой видеопамяти, что, по сути, почти одно и то же. В этом случае при записи в область видеопамяти данные будут записаны как в видеопамять, так и в ОЗУ (или даже в кэш), а при считывании из этой области обращение будет только к быстродействующему ОЗУ. И, в-четвертых, можно принципиально сократить объем информации, передаваемой графическому адаптеру, но для этого графический адаптер должен быть наделен "интеллектом". В современных компьютерах используются все эти решения.

Под интеллектом графического адаптера подразумевается наличие на его плате собственного процессора, способного формировать растровое изображение в видеопамяти (bit-map) по командам, полученным от центрального процессора. Команды ориентируются на наиболее часто используемые методы описания изображений, которые строятся из отдельных графических элементов более высокого уровня, чем пикселы.

Команды рисования (Drawing Commands) обеспечивают построение графических примитивов точки, отрезка прямой, прямоугольника, дуги, эллипса. Примитивы такого типа в командах описываются в векторном виде, что гораздо компактнее, чем их растровый образ. Таким образом, удается значительно сократить объем передаваемой графической информации за счет применения более эффективного способа описания изображений.

К командам рисования относится и заливка замкнутого контура, заданного в растровом виде, некоторым цветом или узором (pattern). Она ускоряется особенно эффективно: при программной реализации процессор должен просмотреть содержимое видеопамяти вокруг заданной точки, двигаясь по всем направлениям до обнаружения границы контура и изменяя цвет пикселов на своем пути. При этом требуется чтение большого объема данных видеопамяти, их анализ и запись модифицированных данных обратно в видеопамять. Процессор интеллектуального адаптера способен выполнить эту операцию быстро и не выходя с этим потоком данных на внешнюю магистраль. Копирование блока с одного места экрана на другое применяется для "прокрутки" изображения экрана в разных направлениях. Эта команда сводится к пересылке блока бит BitBlT (Bit Block Transferring), и эта операция интеллектуальным адаптером может быть сильно ускорена. Для формирования курсора на графическом экране применяют команды работы со спрайтами. Спрайт (Sprite) - небольшой прямоугольный фрагмент изображения, который может перемещаться по экрану как единое целое. Перед использованием его программируют, определяют размер и его растровое изображение, после чего он может перемещаться по экрану, для чего достаточно только указывать его координаты. Аппаратная поддержка окон (Hardware Windowing) упрощает и ускоряет работу с экраном в многозадачных (многооконных) системах. На традиционном графическом адаптере при наличии нескольких, возможно перекрывающих друг друга окон программе приходится отслеживать координаты обрабатываемых точек с тем, чтобы не выйти за пределы своего окна. Аппаратная поддержка окон упрощает вывод изображений: каждой задаче выделяется свое окно - область видеопамяти требуемого размера, в котором она работает монопольно.

Взаимное расположение окон сообщается интеллектуальному адаптеру, и он для регенерации изображения синхронно с движением луча по растру сканирует видеопамять не линейно, а перескакивая с области памяти одного окна на другое. Если объем видеопамяти превышает необходимый для данного формата экрана и глубины цветов, то в ней можно строить изображение, превышающее по размеру отображаемую часть. Интеллектуальному адаптеру можно поручить панорамирование (Panning) и отображение заданной области. При этом горизонтальная и вертикальная прокрутка изображения не потребует операций блочных пересылок (конечно, в пределах сформированного большого изображения) и для перемещения достаточно лишь изменить указатель положения.

Вышеописанные функции интеллектуального адаптера относятся к двумерной графике (2D). Современные графические адаптеры берут на себя и многие функции построения трехмерных изображений. Не вдаваясь в подробности, можно сказать, что трехмерное изображение должно состоять из ряда поверхностей различной формы. Эти поверхности "собираются" из отдельных элементов, чаще треугольников, каждый из которых имеет трехмерные координаты вершин и описание поверхности (цвет, узор). Перемещение объектов (или наблюдателя) приводит к необходимости пересчета всех координат. Для создания реалистичных изображений учитывается перспектива пространственная и атмосферная (дымка или туман), освещенность поверхностей и отражение света от них, прозрачность и многие факторы. Конечно, для построения сложных изображений графическому адаптеру будет явно тесно в ограниченном объеме видеопамяти. Для обеспечения доступа к основной памяти компьютера он должен иметь возможность управления шиной (bus mastering). Специально для таких адаптеров в 1996 г. появился новый канал связи с памятью AGP (Accelerated Graphic Port).

Ускорение построений в интеллектуальном адаптере обеспечивается несколькими факторами. Во-первых, это сокращение объема передачи по магистрали. Во-вторых, во время работы процессора адаптера центральный процессор свободен, что ускоряет работу программ даже в однозадачном режиме. В-третьих, процессор адаптера, в отличие от процессора с самой сложной в мире системой команд представителя семейства x86, ориентирован на выполнение меньшего количества инструкций, а потому способен выполнять их гораздо быстрее центрального. И, в-четвертых, скорость обмена данных внутри адаптера может повышаться за счет лучшего согласования обращений к видеопамяти для операций построения с процессом регенерации изображения, а также за счет расширения разрядности внутренней шины данных адаптера. В современных графических адаптерах широко применяется видеопамять DDR и DDR 2, а разрядность внутренней шины 256 бит (при 32-битной внешней шины) считается нормой. На подходе и адаптеры со 512-разрядной внутренней шиной. Правда, и здесь полная разрядность шины (но уже внутренней) может и не использоваться при малом объеме установленной видеопамяти.

Итак, мы рассмотрели варианты организации видеопамяти и кратко обсудили способы формирования в ней битовой карты изображения. При регенерации на выходе видеопамяти (или сдвиговых регистров) имеется некоторое количество бит, отвечающих за раскраску текущего выводимого пиксела. Количеством этих бит N определяется максимальное число цветов, присутствующих на экране C=2N. Однако трактовать эти биты можно по-разному. При одном бите на пиксел и монохромном мониторе трактовка в принципе однозначна (светится - не светится), хотя были мониторы, допускающие реверс изображения. При двух битах на точку возможности цветного монитора, у которого можно управлять тремя цветами, используются ограниченно: монитор обеспечивает по крайней мере 8 цветов, а адаптер может выдать только 4. Для смягчения этого дисбаланса применили так называемую технику палитр (Pallette). Ее суть заключается в том, что биты одного пиксела, поступающие с видеопамяти, перед выходом в интерфейс монитора проходят через некоторый управляемый преобразователь. Выход этого преобразователя имеет разрядность, поддерживаемую интерфейсом монитора, и биты видеопамяти задают номер цвета в выбранной палитре цветов. Переключив палитру (или перепрограммировав ее набор цветов), можно получить другую гамму цветов на экране, но опять-таки одновременно будет присутствовать не более 2N цветов [3].

На производительность графической подсистемы влияют несколько факторов:

· скорость центрального процессора (CPU)

· скорость интерфейсной шины (PCI или AGP)

· скорость видеопамяти

· скорость графического контроллера

Графический контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.

Появление насыщенных мультимедиа и видеорядом приложений, так же, как и увеличение тактовой частоты современных центральных процессоров, сделало невозможным и дальше использовать стандартную динамическую память со случайным доступом (DRAM). Современные мультимедиа контроллеры требуют от основной системной памяти большей пропускной способности и меньшего времени доступа, чем когда-либо ранее до этого. Идя навстречу новым требованиям, производители предлагают новые типы памяти, разработанные с помощью обычных и революционных методов. Впечатляющие усовершенствования делают проблему правильного выбора типа памяти для приложения особенно актуальной и сложной [1].

2. Видеопамять различных типов графических адаптеров

2.1. EGA и VGA адаптеры

Видеоадаптеры EGA и VGA условно делятся на шесть логических блоков, описание которых приведены ниже:

1) Видеопамять.

В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Для EGA и VGA видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях SVGA и XGA объем видеопамяти может быть увеличен до 2Мбайт. Видеоадаптеры SVGA оснащаются значительно большим объемом видеопамяти.   В них может быть установлено больше 4 Мбайт памяти. Видеопамять находится в адресном пространстве процессора и программы могут непосредственно производить с ней обмен данными.

2) Графический контроллер.

Посредством его происходит обмен данными между центральным процессором и видеопамятью. Аппаратура графического контроллера позволяет производить над данными, поступающими в видеопамять и расположенными в регистрах-защелках простейшие логические операции.

От контроллера требуется наибольшая производительность. Фраза требуется производительность означает, что некоторые вещи происходят настолько быстро, насколько это обеспечивается пропускной способностью. Пропускная способность обычно измеряется в мегабайтах в секунду и показывает скорость, с которой происходит обмен данными между видеопамятью и графическим контроллером.

3) Последовательный преобразователь.

Выбирает из видеопамяти один или несколько байт, преобразует их в поток битов, затем передает их контроллеру атрибутов.

4) Контроллер ЭЛТ.

Генерирует временные синхросигналы, управляющие ЭЛТ.

5) Контроллер атрибутов.

Преобразует информацию о цветах из формата. в котором она хранится в видеопамяти, в формат, необходимый для ЭЛТ. Преобразование цветов осуществляется в соответствии с таблицей цветовой палитры (Color Look-up Table). Модифицируя таблицу цветовой палитры, можно выбрать 16 цветов, поддерживаемых видеоадаптером EGA из 64 цветов, которые может отображать цветной улучшенный монитор.

6) Синхронизатор.

Управляет всеми временными параметрами видеоадаптера. Синхронизатор также управляет доступом процессора к цветовым слоям видеоадаптера.

На рис. 2 представлена блок схема видеоадаптеров EGA и VGA, в которой отображены связи между их основными логическими блоками.

Рис.2 Блок-схема видеоадаптеров EGA/VGA

Видеопамять адаптеров EGA и VGA разделена на четыре банка, или на четыре цветовых слоя. Эти банки размещаются в одном адресном пространстве таким образом, что по каждому адресу расположено четыре байта (по одному байту в каждом банке). Какой из банков памяти используется для записи или чтения данных процессором, определяется при помощи установки нескольких регистров адаптера. Так как все четыре банка находятся в одном адресном пространстве, то процессор может производить запись во все четыре банка за один цикл записи. Благодаря этому некоторые операции, например, заполнение экрана, происходят с большей скоростью. В том случае, когда запись во все четыре банка не требуется, можно разрешать или запрещать запись во все четыре банка при помощи регистра разрешения записи цветового слоя. Для операции чтения в каждый момент времени может быть разрешен с помощью регистра выбора читаемого цветового слоя только один цветовой слой. В большинстве режимов видеоадаптера видеопамять разделена на несколько страниц. При этом одна из них является активной и отображается на экране. При помощи функций BIOS или программирования регистров видеоадаптера можно переключать активные страницы видеопамяти. Вывод информации может производиться как в активные, так и в неактивные страницы видеопамяти.

В текстовых режимах на экране могут отображаться только текстовые символы. Стандартные текстовые режимы позволяют выводить на экран 25 строк по 40 или 80 символов. Для кодирования каждого знакоместа экрана используется два байта: первый из них содержит ASCII код отображаемого символа, второй - атрибуты символа. ASCII коды символов экрана располагаются в нулевом цветовом слое, а их атрибуты - в первом цветовом слое. Атрибуты определяют цвет символа и цвет фона. Благодаря такому режиму хранения информации достигается значительная экономия памяти. При отображении символа на экране происходит преобразование его из формата ASCII в двумерный массив пикселов, выводимых на экран. Для этого преобразования используется таблица трансляции символов (таблица знакогенератора). Таблица знакогенератора хранится во втором слое видеопамяти. При непосредственном доступе к видеопамяти нулевой и первый цветовые слои отображаются на общее адресное пространство с чередованием байтов из слоев. Коды символов имеют четные адреса, а их атрибуты - нечетные. При установке текстовых режимов работы видеоадаптеров EGA и VGA BIOS загружает таблицы знакогенератора из ПЗУ во второй цветовой слой видеопамяти.

В последствие таблицы используются при отображении символов на экране. Благодаря этому можно легко заменить стандартную таблицу знакогенератора своей собственной. Это широко применяется при русификации компьютеров. EGA и VGA обеспечивают возможность одновременной загрузки соответственно четырех и восьми таблиц знакогенераторов в память. Каждая таблица содержит описание 256 символов. Одновременно активными могут быть одна или две таблицы знакогенератора. Это дает возможность одновременно отображать на экране до 512 символов. При этом один бит из байта атрибутов указывает, какая из активных таблиц знакогенератора используется при отображении данного символа. Номера активных таблиц знакогенератора определяются регистром выбора знакогенератора. EGA поддерживает два размера для матриц символов: 8х8 и 8х14 пикселов. Один из этих наборов символов автоматически загружается BIOS в видеопамять при выборе текстового режима. Так как VGA имеет большую разрешающую способность, то его матрица символа имеет размеры 9х16. На каждый символ отводится 32 байта. Первая таблица имеет в видеопамяти адреса: 0000h-1FFFh, вторая: 2000h-3FFFh. восьмая: E000h-FFFFh.

Каждый символ, отображаемый на экране в текстовом режиме, определяется не только своим ASCII кодом, но и байтом атрибутов. Атрибуты задают цвет символа, цвет фона, а также некоторые другие параметры. Биты D0-D2 байта атрибутов задают цвет символа, D4-D6 цвет фона. Если активной является одна таблица знакогенератора, то D3 используется для управления интенсивностью цвета символа, что позволяет увеличить количество воспроизводимых цветов до 16. Если одновременно определены две таблицы знакогенератора, то D3 задает таблицу знакогенератора, которая будет использована для отображения данного символа. Бит D7 выполняет две различные функции в зависимости от состояния регистра режима контроллера атрибутов. Данный бит либо управляет интенсивностью цвета фона, увеличивая количество отображаемых цветов до 16, либо разрешением гашения символа, в результате чего символ на экране будет мигать. По умолчанию данный бит управляет разрешением гашения символа. Распределение видеопамяти в графических режимах работы адаптеров отличается от распределения видеопамяти в текстовых режимах.

Ниже рассмотрена структура распределения видеопамяти отдельно для каждого графического режима. Это режимы низкого разрешения (320х200), используются 4 цвета. Поддерживаются видеоадаптерами CGA, EGA и VGA. У EGA и VGA видеоданные расположены в нулевом цветовом слое, остальные слои не используются. Для совместимости с CGA отображение видеопамяти на экране не является непрерывным: первая половина видеопамяти (начальный адрес В800:0000) содержит данные относительно всех нечетных линий экрана, а вторая (начальный адрес В800:2000) - относительно всех четных линий. Каждому пикселу соответствует два бита видеопамяти. За верхний левый пиксел экрана отвечают биты D7 и D6 нулевого байта видеопамяти. В режимах 4 и 5 имеются два набора цветов: стандартный и альтернативный: 00 - черный; 01 - светло-синий (зеленый); 10 - малиновый (красный); 11 - ярко-белый (коричневый). Режим 6 является режимом наибольшего разрешения для CGA (640х200). Видеоадаптеры EGA и VGA используют для хранения информации только нулевой слой. Как и в режимах 4 и 5 первая половина видеопамяти отвечает за нечетные линии экрана, а вторая половина - за четные. В данном режиме на один пиксел отводится один бит видеопамяти. Если значение бита равно 0, то пиксел имеет черный цвет, а если единице - то белый. Разрешающая способность в режиме 0Dh составляет 320х200, а в режиме 0Eh 640х200 пикселов. Данный режим поддерживается только видеоадаптерами EGA и VGA.

Для хранения видеоданных используются все четыре цветовых слоя. Адресу видеопамяти соответствуют четыре байта, которые вместе определяют восемь пикселов. Каждому пикселу соответствуют четыре бита - по одному из каждого цветового слоя. Четыре бита на пиксел, используемые в данных режимах, позволяют отображать 16 различных цветов. Запись в каждый из этих цветовых слоев можно разрешить или запретить при помощи разрешения записи цветового слоя. Управление доступом к цветовым плоскостям осуществляется при помощи регистров. Адресный регистр графического контроллера: порт вывода для этого регистра 3CEh; биты 0-3 содержат адрес регистра, остальные не используются. Регистр цвета. для доступа к этому регистру значение адресного регистра должно быть 00h, адрес порта вывода для этого регистра 3CFh; биты 0-3 определяют значение для соответствующей плоскости, остальные не используются. Регистр разрешения цвета. для доступа к этому регистру значение адресного регистра должно быть 01h, адрес порта вывода для этого регистра 3CFh; биты 0-3 означают разрешение соответствующего слоя, а остальные не используются. Регистр выбора плоскости для чтения. для доступа к этому регистру значение адресного регистра должно быть 04h, адрес порта вывода для этого регистра 3CFh; биты 0-2 содержат номер плоскости для чтения, а остальные не используются.

Графический контроллер осуществляет обмен данными между видеопамятью и процессором. Он может выполнять над данными, поступающими в видеопамять, простейшие логические операции: И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, циклический сдвиг. Таким образом, видеоадаптер может выполнять часть работы по обработке видеоданных. Хотя процессор может читать данные только из одного цветового слоя, запись данных в регистры-защелки происходит из всех цветовых слоев. Эту особенность можно использовать для быстрого копирования областей экрана. Во время цикла чтения данных из видеопамяти, графический контроллер может выполнять операцию сравнения цветов. В отличие от обычной операции чтения, когда читается только один цветовой слой, при операции сравнения цветов графический контроллер имеет доступ ко всем четырем слоям одновременно. В случае совпадения вырабатывается определенный сигнал. Это устройство запоминает данные, читаемые из видеопамяти в течении цикла регенерации, преобразует их в последовательный поток бит, а затем передает их контроллеру атрибутов.

Контроллер атрибутов в графических режимах управляет цветами. Значениям цветовых атрибутов ставится в соответствие определенный цвет при помощи таблицы цветовой палитры. Эта таблица ставит в соответствие четырем битам из видеопамяти шесть битов цветовой информации. Для ЕGA эта информация поступает непосредственно на дисплей, а для VGA - преобразуется в соответствии с таблицей цветов тремя ЦАП в RGB-сигнал и передается на дисплей.

Контроллер ЭЛТ выполняет следующие функции: вырабатывает сигналы управления работой ЭЛТ, определяет формат экрана и символов текста, определяет форму курсора, управляет световым пером, управляет скроллингом содержимого экрана.

Все сказанное нами остается верно и для видеоадаптеров SVGA. Однако устройство видеоадаптеров SVGA значительно сложнее [2].

2.2. SVGA адаптеры

Сразу после появления видеоадаптера VGA многие фирмы начали выпуск новых моделей видеоадаптеров, обеспечивающих отображение большего количества цветов и большую разрешающую способность. Такие видеоадаптеры получили общее название Super VGA или SVGA.

Подавляющее большинство видеоадаптеров SVGA обеспечивают полную совместимость с VGA на уровне регистров. Поэтому все программное обеспечение, разработанное для видеоадаптера VGA, работает с видеоадаптерами SVGA без дополнительных изменений.

Естественно, чтобы расширить возможности видеоадаптера VGA, пришлось дополнить его новыми регистрами. Видеоадаптеры SVGA имеют значительно больше регистров, чем простые видеоадаптеры VGA. Чтобы видеоадаптер SVGA смог проявить все свои возможности, необходимо, чтобы программное обеспечение правильно использовало все регистры видеоадаптера.

К сожалению, SVGA не является стандартом, наподобие EGA или VGA. Различные модели видеоадаптера SVGA обладают различным набором регистров, расположенных по разным адресам и выполняющих различные функции. Это значительно затрудняет создание программ, использующих все возможности SVGA, так как такая программа должна правильно определить тип вашего видеоадаптера и работать с ним соответствующим образом.

Ассоциация VESA разработала стандарт на функции BIOS, позволяющие управлять видеоадаптерами SVGA. Текущая версия стандарта VESA не позволяет реализовать все возможности современных видеоадаптеров, например, отображать геометрические фигуры с использованием аппаратных возможностей акселераторов.

Самые широкие возможности для использования видеоадаптеров SVGA предоставляет операционная система Windows. В ней используются специальные драйверы, выполняющие всю работу по программированию видеоадаптеров на аппаратном уровне. Обычно драйверы разрабатываются самой фирмой создавшей видеоадаптер. Поэтому кропотливая работа с регистрами адаптера скрыта от программистов, разрабатывающих программы Windows. Они имеют дело с хорошо документированными высокоуровневыми функциями графического интерфейса.

Видеоадаптеры SVGA превосходят VGA по разрешению экрана и количеству одновременно отображаемых цветов.

Большинство видеоадаптеров SVGA содержат специальный графический сопроцессор, который может выполнять различные функции. Например, он может использоваться для рисования различных геометрических фигур, масштабирования участков изображения и т. д. Видеорежимы добавляются из ряда 800x600, 1024x768, 1152x864, 1280x1024, 1600x1200 - большинство с соотношением 4:3.